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ABSTRACT
Recently, there has been a surge in the scheduling of queries in
advance to analyze the ever-growing streams of data and to re-
duce the latency by incremental processing. In the database area,
people use incremental view maintenance (IVM) to materialize in-
termediate views at different levels or for distinct operators. While
previous studies have attempted to build prototype systems to en-
hance performance, they often fail to provide convenient APIs or
utilize general intermediate representations, making it challenging
for developers to integrate these techniques. Furthermore, such
optimizations struggle to blend seamlessly into modern database
systems and often lack efficiency.

We aim to employ a query plan as the intermediate represen-
tation, bridging the gap between existing works. Furthermore,
we demostarte such system can evaluate all the operators in a
IVM friendly and efficient manner. Moreover, in certain specialized
queries, such as aggregate nested correlated queries, our system can
be tailored to accommodate even the most complex cases, including
filling the holes for MAX/MIN aggregation using an innovative
range binary search tree (RBST).

1 INTRODUCTION
Scheduled queries become prevailing under the increasing demand
for real-time data analysis. That is, queries are placed earlier in
the workflow to process on the continuously arriving streams of
data. Such as executing ETL jobs or maintaining dashboard reports
over dynamic datasets [39]. This type of responsive analytics play
a crucial role in finance, intelligence, social media analysis and
infrastructure monitor. Consider a scenario where a trader wants
to know the volatility (or variance) of a stock during trading hours.
Traditionally, he will issue one SQL query each time they need
this information, triggering a recomputation of the entire dataset.
However, the computing of variance can be decomposed into three
components: the square of mean, the product between the summa-
tion of all the value and the mean, and the summation of all the
square of the value. Each component can be maintained quickly,
consequently, the variance can be incrementally computed effi-
ciently. By adopting this approach, the server will preserve more
computing resources for other queries as well as returning the
results in real time.

The incremental view maintenance (IVM) problem statement
is defined as follow: given a query 𝑄 , a database 𝑑𝑏 and an up-
date Δ𝑑𝑏. The task is to compute 𝑄 (𝑑𝑏 + Δ𝑑𝑏) with the previous
result 𝑄 (𝑑𝑏) (+ is defined as a way of combination). Specifically,
for aggregate operation Sum applied on attribute A of relation R.
𝑆𝑢𝑚(𝑅.𝐴 + Δ𝑅.𝐴) = 𝑆𝑢𝑚(𝑅.𝐴) + 𝑆𝑢𝑚(Δ𝑅.𝐴) since distributive law

holds for Sum. Therefore, we can simply sum up the previous re-
sults and the newly delta data. However, for Max operation, when
a deletion happens, we can hardly calculate𝑀𝑎𝑥 (𝑅.𝐴 − Δ𝑅.𝐴) by
𝑀𝑎𝑥 (𝑅.𝐴) and𝑀𝑎𝑥 (Δ𝑅.𝐴). For join operation, similar to the ag-
gregate, it depends on the join conditions.

In relational database management system (RDBMS), efficiently
materializing a view under updates remains a challenge. To support
tuple-level views refresh, Postgresql [2] creates an additional table
to store the provenance of each joined tuple. For example, the ID
of 𝑅1 is 101, the ID of 𝑇1 is 201 and the ID of their join result 𝑅1𝑇1
is 301. Then, there will be a tuple (301, 101, 201) stored in an addi-
tional temporary table to represent the join relationship. (𝑅1,𝑇1 are
tuples from relation 𝑅 and 𝑇 ). This approach allows delta results
to be inserted or deleted easily but at the expense of significant
extra memory space and time cost. Moreover, it does not support
aggregate operations yet. Oracle Database supports IVM through
the use of materialized views and materialized view logs [4]. When
a materialized view is created with the "fast refresh" option, Ora-
cle tracks changes to the base tables using materialized view logs.
Upon refreshing the materialized view, Oracle applies the changes
recorded in the logs incrementally. So you can image, materialized
view logs consume additional storage, which can become significant
for large tables with frequent updates. Additionally, such lazy up-
date method still cause latency, especially when dealing with high
transaction volumes or complex materialized views. What is more,
sub-query, outer joins, or certain types of aggregation functions
are not eligible for fast refresh. As for SQL Server, it supports IVM
through the use of indexed views. Indexed views are materialized
views that have a unique clustered index on them. When the base
data changes, SQL Server maintains the indexed view incrementally
by updating the affected rows in the view. With the same limitation
as Oracle, SQl server also suffer from large write overhead.

Some previous database works are proposed to handle some
limitation above. Non-distributive aggregation functions were in-
vestigated by Themistoklis et al [30]. SB-tree was proposed by Jun
and Jennifer [40] to deal with temporal aggregates. Next, Larson’s
and Zhou’s algorithm [22] introduced an efficient maintenance
procedure to cover the outer-join.

Following the idea of creating delta queries [30], DBToaster
[20, 21] proposes theHigh-Order IVM (HO-IVM)where delta queries
will be maintained recursively to help maintain the original query.
Just like using the second order derivative to get the first order
derivative and then use the first order derivative to calculate the
orginal function. The use of higher-order IVMmakes DBToaster the
state-of-the-art incremental query processing system and shows
substantial speedup over some commercial database systems [20].
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In order to apply derivation more easily, a generailized multi-
set relations (GMRs) based query language, AGgregate CAlculus
(AGCA) is proposed in DBToaster [21] to represent a query based
on the aggregate Sum. Based on that, Count and Average can be
easily expressed. (Count equals summation for a all one attribute,
Average is the division of Sum and Count). But there is no specific
syntax for universal quantification or aggregate like Max, Min and
Sort. Although nested sum-aggregate queries can express these
missing features, it not only complicates the query representation
but also hinders maintenance efficiency. As discussed in [6], corre-
lated nested aggregate queries do not meet the requirement that
delta queries must be simpler than the higher-level query. Addition-
ally, HO-IVM requires identifying a set of sub-queries to materialize
rather than materializing a single full view, which significantly in-
creases the cost for the compiler to find an optimal division. Using
DBToaster outside the scope of IVM can also be challenging due
to the basic data model GMRs, which makes efficient processing
difficult since an underlying map must be used. The underlying
multiset relation forces the constant maintenance of a hashmap for
aggregating all results. Consequently, while DBToaster expands the
generality of incremental maintenance to a large extent, it misses
some operators, has a costly compiling process, and is not as useful
outside of IVM.

Query plans, as the most popular intermediate representation
in modern database systems, connect end-to-end processes from
query parsing and optimization to execution, encompassing cost es-
timation, concurrency control, and debugging. Given their powerful
representation, most optimization techniques mentioned in HO-
IVM can be expressed through query plans. Therefore, integrating
incremental maintenance techniques into query plan specialization
becomes crucial for effectively implementing IVM, especially since
most companies have supported IVM at an early stage. Reusing
existing frameworks is preferable in order to implement this feature
comprehensively.

In [6], the author proposes a general incrementalization algo-
rithm to generate IVM implementation for nested aggregate corre-
lated queries, as well as a specific optimization for certain classes
of queries with multiple conjunctive equality predicates or a single
inequality predicate. The time complexity for maintenance is 𝑂 (𝑛)
and𝑂 (𝑛 log𝑛) respectively. Based on their target query representa-
tion, we can abstract the corresponding query operator pattern. The
size of the pattern is not fixed, which provides the compiler with
numerous choices and makes the optimization process costly. Addi-
tionally, the query requirements are quite strict. If the optimization
algorithm fails to find the patterns, the performance reverts to the
general method. The issue is that it focuses only on specific queries
that can be fully optimized, neglecting those that can be partially
optimized. Despite these limitations, it is still a pioneering effort to
integrate query plans and IVM.

In this report, we explore some challenges that are in the way
between query plan the IVM and investigate the query plan based
IVM compiler.

(1) We present a case study of nested aggregate queries and
analyze why it cannot be supported by existing approaches.
Then, we motivate our approach of building IVM compiler
on query plan (section 2).

(2) We re-structure the query evaluator for IVM by converting
the data-centic model to a push model (section 3). Next, we
present the IVM evaluation strategy for common operators
(section 4) and how to extend its generality (section 8).

(3) We introduce the GroupJoin to show its power of accom-
modate most existing algorithm (section 5). Furthermore,
we proposed new algorithm to bridge the gap between ex-
isting method with the MAX/MIN-based aggregate nested
query (section 6).

(4) We present a novel binary search tree based data structures
to fit the algorithm mentioned above (section 7).

2 MOTIVATION
In this section, let us recap the representation ofAGgregate CAlculus
(AGCA) proposed by [20]. Next, we will see how to fit it into a view
maintenance friendly program step by step based on its logical plan.

First of all, let us have a look on theAGCAproposed byDBToaster
[20, 21]. Assume 𝑐 denotes the constants, 𝑥 is attributes of a relation,
®𝑡 represents tuples of attributes, 𝑅 symbols relation names, 𝑡ℎ𝑒𝑡𝑎
means all the comparison operator (>, <,=,≠, ≥ and ≤), and := is
used for assignment. Additionally, with the bag union +, natural
join ∗, and aggregate sum Sum ®𝐴 (group by tuples of variables ®𝐴).
The abstract syntax of AGCA is as follow:

𝑞 B 𝑞 ∗ 𝑞 | 𝑞 + 𝑞 | − 𝑞 | 𝑐 | 𝑥 | 𝑅(®𝑡) | Sum ®𝐴 (𝑞) | 𝑥 𝜃 0 | 𝑥 := 𝑞.

The AGCA is closed under update deltas, that is to say, we can
use theΔ𝑄 in the same language to describe the results of𝑄 changes
when the change workload Δ𝐷 is applied in the database 𝐷 :

Δ𝑄 (𝐷,Δ𝐷) B 𝑄 (𝐷 + Δ𝐷) −𝑄 (𝐷) .
Since the strong compositionality for the language, we can apply
the following rules again and again until we can the basic GMRs or
delta GMRs (update). We use 𝑢 to represent the update, and Δ𝑢𝑄
to denote the update of query 𝑄 .

Δ𝑢 (𝑄1 +𝑄2) B (Δ𝑢𝑄1) + (Δ𝑢𝑄2)
Δ𝑢 (𝑄1 ∗𝑄2) B ((Δ𝑢𝑄1) ∗𝑄2) + ((Δ𝑢𝑄2) ∗𝑄1)

+ ((Δ𝑢𝑄1) ∗ (Δ𝑢𝑄2))
Δ𝑢 (−𝑄) B − Δ𝑢𝑄

Δ𝑢𝑐 B 0
Δ𝑢𝑥 B 0

Δ𝑢 (𝑥 𝜃 0) B 0
Δ𝑢 (𝑥 B 𝑄) B (𝑥 B (𝑄 + Δ𝑢𝑄)) − (𝑥 B 𝑄)
Δ𝑢 (Sum ®𝐴𝑄) B Sum ®𝐴 (Δ𝑢𝑄)

These rules can be regraded as a ring formed by GMRs with + and
∗, and have been studied thoroughly in [19].

If we simply add the Max or Min in the syntax, these rules will be
broken since the Max and Min operations are not streamable [16].
Thus we cannot capture the Δ𝑢 (Max ®𝐴𝑄) by the Δ𝑢𝑄 :

Δ𝑢 (Max ®𝐴𝑄) ̸B Max ®𝐴 (Δ𝑢𝑄).

Furthermore, the compiler is not guaranteed to terminate after
adding the syntax for Max/Min.

The way to express Max/Min or other non-streamable aggregate
is using nested sum-aggregate queries. A simplified version of query
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1 WITH Revenue AS (

2 SELECT l.SK AS SN, Sum(l.ETP * (1 - l.DST)) AS TR

3 FROM Lineitem l

4 WHERE l.SD >= date '1996 -01 -01' AND l.SD < date '1996 -04 -01'

5 GROUP BY l.SK)

6

7 SELECT s.SK, s.NA, s.AD , s.PH, r.TR

8 FROM Supplier s, Revenue r

9 WHERE s.SK = r.SK AND r.TR = (SELECT Max(TR) FROM r)

(a) Condensed SQL query

S.SK = R.SK

TR = Max(TR)

ΓL.SK, Sum(L.EXP * (1 - L.DST) as TR

𝜎L.LD

lineitem

ΓMax(TR)

ΓL.SK, Sum(L.EXP * (1 - L.DST) as TR

𝜎L.LD

lineitem

supplier

(b) Query plan

1 Project [s.SK, s.NA, s.AD, s.PH, r.TR]

2 Join Inner [s.SK = SN]

3 Project [s.SK, s.NA, s.AD, s.PH]

4 LogicalRDD [S.SK, s.NA, s.AD, s.PH, ...]

5 Filter [isnotnull(TR) AND TR = Sub -query(MAXTR)]

6 Sub -query

7 Aggregate [MAX(TR) as MAXTR]

8 Aggregate [l.SK] [SUM(l.ETP * (1.0 - l.DST)) AS TR]

9 Project [l.SK, l.ETP , l.DST]

10 Filter [l.SD >= '1996 -01 -01' AND l.SD <= '1996 -04 -01']

11 LogicalRDD [l.SK, l.SD, l.ETP , l.DST , ...] FROM Lineitem l

12 Aggregate [l2.SK] [l2.SK AS SN, SUM(l2.ETP * (1.0 - l2.DST)) AS TR]

13 Project [l2.SK, l2.ETP , l2.DST]

14 Filter [l2.SD >= '1996 -01 -01' AND l2.SD <= '1996 -04 -01']

15 LogicalRDD [l2.SK, l2.SD, l2.ETP , l2.DST , ...] FROM Lineitem l2

(c) Optimized query plan by SparkSQL

R B Sum[𝑆𝐾 ] (𝑇𝑅 B 𝐿𝐼 (𝐷𝑆𝑇, 𝐸𝑇𝑃)
∗ 𝐸𝑇𝑃 ∗ (1 − 𝐷𝑆𝑇 ))

Q15 B Sum[𝑆𝐾,𝑁𝐴,𝐴𝐷,𝑃𝐻,𝑇𝑅 ] (𝑆 (𝑆𝐾, 𝑁𝐴,𝐴𝐷, 𝑃𝐻 )
∗ 𝑅(𝑆𝐾,𝑇𝑅) ∗ (𝑣1 B Sum[ ] (𝑅(𝑆𝐾 ′,𝑇𝑅′)
∗ (𝑇𝑅′ > 𝑇𝑅)) ∗ (𝑣1 = 0))

(d) AGCA expressions

Figure 1: SQL query, query plan, optimized query plan and AGCA expression for simplified query 15 in TPC-H dataset [5].

15 in TPC-H [5] dataset will be used as an example of a nested aggre-
gate query. The SQL query, query plan, and the AGCA expression
of this query which contains Max in its sub-query are shown in
figure 1. The Order_by and Sort is ignored since it is out of the
scope of this paper. To represent query precisely, the condensed
schema 𝑠 (𝑆𝐾, 𝑁𝐴,𝐴𝐷, 𝑃𝐻 ) (𝑠 for supplier, 𝑆𝐾 for suppkey, 𝑁𝐴 for
name, 𝐴𝐷 for address, 𝑃𝐻 for phone), 𝑙 (𝑆𝐾, 𝐸𝑇𝑃, 𝐷𝑆𝑇, 𝑆𝐷) (𝑙 for
lineitem, 𝑆𝐾 for suppkey, 𝐸𝑇𝑃 for extenedprice, 𝐷𝑆𝑇 for discount,
𝑆𝐷 for shipdate) and 𝑇𝑅 for total_revenue will be used.

In figure 1d, R means the first materialized view in figure 1a (line
1-4), and Q15 covers the main query in figure 1a (line 6-8). In Q15,
we use a nested sub-query 𝑣1 to calculate the number of item in R
whose 𝑇𝑅 is larger than the 𝑇𝑅 from the outer query. Furthermore,
the condition (𝑣1 = 0) forces that there is no larger 𝑇𝑅. Combined
together, they make up the logic for Max.

Since AGCA does not support Max/Min operators inherently
so the query 15 was written by nested query in [21] to make it
runnable on the DBToaster engine. Using nested sum-aggregate
correlated queries to support Max makes the representation quite
complex based on the syntax of AGCA. Additionally, as explored
in [6], we know that maintaining the view for nested correlated
aggregate queries is the weakness of DBToaster, so the solution
impairs the efficiency of view maintenance further.

To fix this hole, some data structure-based solutions as range
indices are feasible [21]. As introduced in [6], parent-relative hash-
based (PAI) and tree-based (RPAI) indices are designed to optimize
the efficiency for nested aggregate correlated queries, which are
also referable to reduce the time cost when Max/Min operators are
evaluated to nested sum-aggregate queries. The target queries of
PAI and RPAI are in the form of:

AggrQ[𝑐𝑜𝑙𝑠 ] (AggrFunc, 𝑅1, · · · , 𝑅𝑛, 𝑣1𝜃𝑞𝑅1 · · · 𝐴𝑁𝐷 𝑣𝑛𝜃𝑞𝑅𝑛 )

This form is completely different from the AGCA expression. Thus,
we can apply some pattern matching algorithm to find some sub-
queries fitting such forms and incrementalize the respective portion
while using the DBToaster to handle the rest of the query. Two
issues will be arisen: (1) Large amounts of transformation between
these two representations needs to be done which will raise the
time cost as well. (2) The number of the relations involved in this
form is not fixed, which means for a join involving 𝑘 relations,
there will be 𝑘 different sub-queries can be handled by PAI or RPAI.
Following this way, we can hardly decide where to stop, whether
we will apply RPAI or PAI again. A specialized optimizer is also
essential for applying these indices.

Therefore, is there any representation general and can cover all
the optimization above? From the AGCA representation in figure
1d, we can find that Sum accords to the Aggregate operator, ∗
accords to the Join operator and other condition can be filled in



Qiyang He

1 class HashJoin(left: Op, right: Op)

2 (lkey: KeyFun)(rkey: KeyFun) extends Op {

3 val hm = new HashMultiMap ()

4 var isLeft = true

5 var parent = null

6 def open() = {

7 left.parent = this; ri ght.parent = this

8 left.open; right.open

9 }

10 def produce () = {

11 isLeft = true; left.produce ()

12 isLeft = false; right.produce ()

13 }

14 def consume(rec: Record) = {

15 if (isLeft) hm += (lkey(rec), rec)

16 else

17 for (lr <- hm(rkey(rec))

18 parent.consume(merge(lr,rec))

19 }

20 }

(a)

1 class IVMHashJoin(left: IVMOp , right: IVMOp)

2 (lkey: KeyFun)(rkey: KeyFun) extends IVMOp {

3 val hmLeft = new HashMultiMap ()

4 val hmRight = new HashMultiMap ()

5 var parent = null

6 def open() = {

7 left.parent = this; right.parent = this

8 left.open; right.open

9 }

10 def consumeLeft(rec: Record) = {

11 for (rr <- hmRight(lkey(rec)))

12 parent.consume(merge(rec , rr))

13 hmLeft += (lkey(rec), rec)

14 }

15 def consumeRight(rec: Record) = {

16 for (lr <- hmLeft(rkey(rec)))

17 parent.consume(merge(lr, rec))

18 hmRight += (lkey(rec), rec)

19 }

20 }

(b)

Figure 2: HashJoin Implementation (a) the data-centric model and (b) IVM model

Select operator. Thus, we can use the query plan to represent the
AGCA. For the pattern proposed by RPAI paper [6], it is also a
combination of Aggregate and Join (you can refer to the section
5 in detail), thus query plan is also a suitable representation for this
optimization. Therefore, we will use the query plan to build a query
compiler for IVM. The details are shown in the following sections.

3 STRUCTURING THE IVM EVALUATORS
As discussed in [34], there are two kinds of mainstream query
evaluation models in database, the iterator (Volcano) model and the
data-centric (produce/consume) model. The volcano model is based
on the next() interface with the pull-based operation. While the
data-centric model is based on the produce/consume interface with
the push-based operation. The iterator model is more intuitive but
the data-centric model leads to more efficient compilation results
as improving data and code locality.

If we think about the data flow in IVM, we will find that, even if
it can also be represented by a query plan, one update will always
trigger a series of updates along a path from a leaf node to the root.
In the volcano model, the next() operation (from the root operator)
will invoke recursively all the next() until a scan (or materialized
state) is reached. The invoking order in the data-centric model is
almost the same. However, for the IVM, the data flow does not
happen top-down (one parent always invokes the interface from
its successor nodes). Concretely, take the HashJoin with two scan
operators from relation A and B joining on the attribute t as an
example as shown in figure 2. The code of data-centric model is
shown in figure 2a, the produce method in the Join will invoke
the produces from A and B. Thus, it leads to better locality for
the data compared to the volcano model. However, for the IVM,
data will come one by one, a fine-grained update is needed. So the
data-centric model cannot improve higher data locality here. The
implementation for the HashJoin for the IVM is in figure 2b, as
you can see, each consume will update the intermediate views (or

indexes) in the current operator and then invoke the consume of
its parent node and repeat this recursively until the root is reached.

As for the data-centric evaluation with callbacks proposed by the
LB2 [34], it does simplify the state for the operators. But replacing
the produce and consumewith the exec and callback function limit
the flexibility if some node is used twice in one query plan. It always
happens for the scan operator. The query plan used by the existing
database is a tree-like structure. The scan operator for the same
relation will appear more than once in the query plan (different
parents cannot share the same child in a tree). As for the fixed
callback function directly from the parent from LB2 [34], since
it is used in single-pass compiler, all the logic for the evaluation
will be determined along the way the exec is invoked from the
root operator to the scan operator. Thus, it will be very difficult to
change or merge the callback function delivered to one operator.
With using such idea for the IVM, we will duplicate the part for the
same scan operator leading to a unnecessary cost for evaluation.

Up to now, we have seen the drawbacks of using the data-centric
evaluation for the IVM. But maintaining the links between parent
and the child node is still what we want to keep since the new
query plan for the IVM will be a directed acyclic graph (DAG).
Such method make sharing the output of one operator (usually the
scan operator) easier. Following the idea from figure 2b, we can
see that the consume from the scan operator or a materialized state
will invoke all the consume from its ancestors’ consume so that the
materialized view along the query plan will be updated with the
new update.

Unlike the common query execution in the traditional database,
we want to maintain the view. Thus, we need to maintain more data
structures (indexes) to keep some intermediate states. As for the
HashJoin in the figure 2, there is only one hashmap used in data-
centric model (shown in figure 2a) while we need to maintain two
hashmaps for both relations for IVM. The case for the HashJoin
is not that hard since all the updates are insertion or deletion, but
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1 SELECT

2 SUM(l.ETP) / 7.0 as AVG_YEARLY

3 FROM

4 Lineitem l, Part p

5 WHERE

6 p.PK = l.PK AND

7 p.BD = 'Brand #23' AND

8 p.CT = 'MED BOX' AND

9 l.QTY < (

10 SELECT

11 0.2 * AVG(l2.QTY)

12 FROM

13 Lineitem l2

14 WHERE

15 l2.PK = p.PK)

(a) Condensed SQL query

1 Aggregate [SUM(l.ETP / 7.0) AS AVG_YEARLY]

2 Project [l.ETP]

3 Join Inner [l.QTY < 0.2 * AVG(l2.QTY) AND l2.PK = p.PK]

4 Project [l.QTY , l.ETP , p.PK]

5 Join Inner [p.PK = l.PK]

6 Project [l.PK, l.QTY , l.ETP]

7 LogicalRDD [l.PK, l.QTY , l.ETP , ...] FROM Lineitem l

8 Project [p.PK]

9 Filter [p.BD = 'Brand #23' AND p.CT = 'MED BOX']

10 LogicalRDD [p.PK, p.BD, p.CT, ...] FROM Part p

11 Filter [isnotnull (0.2 * AVG(l2.QTY))]

12 Aggregate [l2.PK] [0.2 * AVG(l2.QTY), l2.PK]

13 Project [l2.PK, l2.QTY]

14 LogicalRDD [l2.PK, l2.QTY. ...] FROM Lineitem l2

(b) Optimized query plan generated by SparkSQL

Figure 3: SQL query, query plan by SparkSQL for query 17 in TPC-H dataset [5].

for the Select or ThetaJoin where one side is a aggregate value,
the maintenance becomes much more difficult. Since there is no
insertion or deletion for one tuple, the incoming data will update
the aggregate value, then lead to a different filter. We will discuss it
later.

Another problem is that there may be duplicate indexes if we
use the IVM model. Specifically, we have three relations A, B and C
and there are two HashJoin (equi-join): A joins B at the attribute
t; B joins C also at the attribute t. Thus, according to our IVM
model, we will generate two same indexes for the relation B at
the attribute t since they are from completely different HashJoin
operators. Therefore, a initial idea for the IVM compiler is storing
all the indexes in an index manager globally so that whenever
one operator needs to construct a new index, it will firstly check
whether we have already built it, if yes, it will re-use it; otherwise,
a new index will be built. The details and more effective ways are
left for the readers.

4 EVALUATION STRATEGY FOR COMMON
OPERATORS

As discussed in the previous section, we will add more indexes
for all the operators to maintain all the views faster. Let us have a
look on a query plan for query 17 generated by the SparkSQL [8]
shown in figure 3. Query 17 is a aggregate query with a correlated
sub-query.

Similar as the way to represent the query 15 in figure 1, the
Order_by and Sort is ignored since it is out of the scope of this
paper. To represent query precisely, the condensed attributes (𝑃𝐾
for partkey, 𝐷𝐵 for brand, 𝐶𝑇 for container in relation Part), (𝑃𝐾
for partkey, 𝐸𝑇𝑃 for extenedprice in relation Lineitem) are used.
To avoid writing all the attributes in these two relations, I use
the ellipsis to represent unnecessary attributes in the LogicalRDD
used in figure 3b. The query 17 depicts the summation of the
extendedprice for those lineitems whose quantity is less than
one fifth of the average quantity sharing the same partkey and
satisfying some requirements for brand and container.

As you can see from the query plan generated by the SparkSQL
in figure 3b, there are so many Project and Filter operators

used to link those Join and Aggregate. If we still stick to adding
index for each operators, it will cost too much space and make the
view maintenance time-consuming. Thus, there will be no auxiliary
index for the Project operator. For example, in the line 13-14 of
figure 3b, whenever, there is a new tuple inserted to the relation
Lineitem, Project will apply a projection on that tuple and then
deliver to the next Aggregate operator in line 12. In this way, the
Projectwill be very lightweight since it only needs to store a hash
function with several attributes. For the Filter (born from the
Select operator), we can apply the same idea only storing the filter
condition.

However, the case becomes much more complex if there exists
a sub-query, let us recall the example for query 15 shown in fig-
ure 1. As you can see, there is a sub-query to get the maximum
total_revenue (TR for short). The figure 1c shows the optimized
query plan by SparkSQL. To deal with the sub-query, SparkSQL
duplicates the calculation for the TR (line 8-11 and line 12-15 in
figure 1c). Then, it uses the MAXTR as a filter in line 5. The difference
between this Filter with the Filter in query 17 (figure 3b is that
the value used here is a sub-query which means that the value is
not fixed but will update with incoming tuples. In SparkSQL [8],
the sub-query is treated as a expression, instead of an operator in
the condition of the Filter operator. By this way, the update from
the sub-query can hardly be transitioned to the Filter. To mitigate
the inconvenience, we can unnest the sub-query, converting it to be
a Join with the same condition and reducing the sub-query layer.
Similar to the first half condition in line 3 of figure 3b. There is still
some work to be done to make the symbol of attributed consistent
when unnesting. There are some previous work concentrating on
unnesting from SQL Server [11, 13] and Hyper [29].

After discussing the IVM implementation for Filter and Project,
we can focus on Join and Aggregate right now. As covered in the
section 3, the IVM implementation for the inner equiv-join, there
are two hashmaps instead of one to maintain both relations. Then,
for the full outer, left outer or right outer joins, we can apply similar
ideas to create two hashmaps to maintain efficiently. Following the
same idea, we can use two hashmaps to exclude tuples for the left
or right anti-join.
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When it comes to the Aggregate, things are almost the same
as in common query execution. For aggregate with group-by (line
12 in figure 3b), there will be a hashmap to keep the aggregate
value with the corresponding group keys. For aggregate without
group-by (line 1 in figure 3b), we will only create one variable to
monitor the aggregate changes.

5 GROUP-JOIN
Previously, we have seen the evaluation idea for each operator
individually. In this section, we will explore the possibility of com-
bining the multiple operators mentioned above to optimize the IVM
evaluation strategy.

As proposed by RPAI [6], correlated nest aggregate queries are
not handled efficiently by DBToaster, so the PAI and RPAI are
proposed to optimize it with equalities and inequalities respectively.
Specifically, it uses a template to show the queries they can optimize:

𝐴𝑔𝑔𝑟𝑄 [𝑐𝑜𝑙𝑠 ] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐, 𝑅1, 𝑅2, 𝑣1 𝜃 𝑞1)

where 𝐴𝑔𝑔𝑟𝑄 represents it should be an aggregate query, 𝑐𝑜𝑙𝑠 are
the attributes group-by applied to, 𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐 means the aggregate
function, 𝑅1 and 𝑅2 are the relations involved in, and the 𝑣1 𝜃 𝑞1
denotes the join condition. The 𝑣1 is either a 𝑐𝑜𝑛𝑠𝑡 or an 𝐴𝑔𝑔𝑟𝑄
without free variables so that it can be maintained independently.
The 𝑞1 is another 𝐴𝑔𝑔𝑟𝑄 .

Let us see how to accommodate such optimization in the query
plan. Previous work [25] proposed the Groupjoin to optimize
the query evaluation, specifically, it consists of a Join with an
Aggregate. As you can see the line 1 3 in the figure 3b (we can ig-
nore the Project used to link the other two operators), a Groupjoin
can be used to replace these 3 operators. The Aggregate operator
shows the 𝐴𝑔𝑔𝑟𝑄 [𝑐𝑜𝑙𝑠 ] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐) and the Join operator repre-
sents the 𝑅1, 𝑅2 and 𝑣1 𝜃 𝑞1 after. Thus, we have seen how to apply
the RPAI and PAI optimization based on the query plan for two
relations. To extend it to contain multiple predicates, RPAI paper
represents it in this way:

𝐴𝑔𝑔𝑟𝑄 [𝑐𝑜𝑙𝑠 ] (𝐴𝑔𝑔𝑟𝐹𝑢𝑛𝑐, 𝑅1, . . . , 𝑅𝑛, 𝑣1 𝜃 𝑞𝑅1 . . . 𝐴𝑁𝐷 𝑣𝑛 𝜃 𝑞𝑅𝑛−1 )

where there are 𝑛 relations involved in this huge Groupjoin. Corre-
spondingly, we can add more Join operators below the pattern (line
1 3 in figure 3b) we mentioned above to match this optimization
strategy. After mining the pattern, we can apply similar optimiza-
tion as in RPAI and PAI.

6 INCREMENTALIZATION OF NESTED
MAX/MIN

Even if RPAI and PAI [6] can be used to optimize Groupjoin, it
is limited by the aggregate Sum, it does not work for Max/Min. We
will discuss about the difficulties of incrementalization of nested
Max/Min in this section. Without loss of generality, we will only
use Max in the example. The case for MIN can be done in a similar
way. Following the same idea of [6], we will also use two examples
to show the restrictions of existing system and propose new ideas
about the indices to efficiently support nested Max/Min.

6.1 Nested Max with Equality
Example 6.1. This query is from the example 2.1 in [6], which

computes the aggregate sum of A and B from the relation R for those
satisfying a Sum-based equality predicate.

Q = SELECT Sum(r.A * r.B) FROM R r
WHERE 
  0.5 * (SELECT Sum(r1.B) FROM R r1) =

      (SELECT Sum(r2.B) FROM R r2 WHERE r2.A = r.A)


lhs_sum

rhs_sum

The following query changes the Sum to Max in the nested sub-
query.

Example 6.2. This query uses the Max in the predicate of the sub-
query comparing to the example 6.1.
SELECT Sum(r.A * r.B) FROM R r

WHERE

0.75 * (SELECT Sum(r1.B) FROM R r1) =

(SELECT Max(r2.B) FROM R r2 WHERE r2.A = r.A)

These queries only involve one relation 𝑅(𝐴, 𝐵). The outer query
is about the summation of𝐴 and 𝐵. The inner query consists of two
sides, the left one is a non-correlated summation while the right
one is a correlated Max query for those sharing the same 𝐴. The
only difference between this query and the example 6.1 in [6] is
that a Max aggregate in involved in the nested correlated right-hand
side instead of Sum.

Since equality is used in the predicate, according to the idea in
[6], we prefer to use the index Partial Aggregate Indexes (PAI). With
the extension covered in section 4.2.5, to handle the deletions for
Max, another binary search tree (BST) of the data will be used for
each different𝐴 value rather than only keeping the aggregate value.
That is because the updated aggregate value cannot be recovered
for deletions of Max operation.

6.1.1 Using PAI Index for Query with Sum Predicate. In the figure
4a, we show the code generated by [6] for example 6.1 in Python.
Next, we will recap the steps for the incrementalization. Whenever
a new tuple 𝑡 comes, the lhs_sum in the sub-query will update
by 𝑡 .𝑋 ∗ 𝑡 .𝐵. However, the lhs_sum is the same for every outer
tuples. Thus, the PAI uses the map2 to maintain it in 𝑂 (1) (Line 14).
Secondly, the rhs_sum for the 𝑡 .𝐴 also changes by 𝑡 .𝑋 × 𝑡 .𝐵, the
PAI maintains the rhs_sum by map3 for each different 𝐴 value in
constant time (Line 13). Finally, RPAI utilizes the map3 to keep the
final aggregate answer (𝑠𝑢𝑚(𝑟 .𝐴 ∗ 𝑟 .𝐵)) for all the rhs_sum. Since
it is a hashmap, so all the updates (Line 16-18) can be done in 𝑂 (1).
To return the updated final answer, we just need to probe the new
lhs_sum into the aggrMap and then return the value.

6.1.2 Using PAI Index + BST for Query with Max Predicate. To
illustrate the way to enhance PAI by another binary search tree to
support deletions for Max, we convert the code in figure4a to the
code in figure 4b. As you can see in the Line 4, the original map3 has
been improved from a (int -> int) hashmap to a (int -> binary search
tree) hashmap. To find the oldMaxB(line 8) and the newMaxB(line
17), we can define a getMax method for the binary search tree. For
insertion (𝑡 .𝑋 = 1) or deletion (𝑡 .𝑋 = −1) at line 12, we can also
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1 # primary maps

2 map1 = {} # A -> sum(A * B)

3 map2 = 0.0 # -> sum(B) [lhs_sum]

4 map3 = {} # A -> sum(B) [rhs_sum]

5 # aggregate maps

6 aggrMap = {} # rhs_sum -> sum(A * B)

7

8 def on_new_R(t: R):

9 oldSumB = map3[t.A] # old rhs_sum for t.A

10 oldFinalAggSum = map1[t.A]

11

12 # update the maps

13 map3[t.A] += t.B * t.X

14 map2 += t.B * t.X

15 map1[t.A] += t.A * t.B * t.X

16 aggrMap[oldSumB] -= oldFinalAggSum

17 aggrMap[oldSumB + t.X * t.B]

18 += oldFinalAggSum + t.A * t.B * t.X

19

20 #compute the final result

21 res = aggrMap[map2 * 0.5]

22 return res

𝑂 (1)

(a) PAI for Sum-Equality based Nested Query (Section 6.1.1)

1 # materialized views & aggregate maps

2 map1 = {} # A -> sum(A * B)

3 map2 = 0.0 # -> sum(B)

4 map3 = {} # A -> max(B) // BST for max(B)

5 aggrMap = {} # rhs_max -> sum(A * B)

6

7 def on_new_R(t: R):

8 oldMaxB = map3[t.A]. getMax ()

9 oldFinalAggSum = map1[t.A]

10

11 # update the maps

12 map3[t.A]. insert(t.B, t.X)

13 map2 += t.B * t.X

14 map1[t.A] += t.A * t.B * t.X

15 aggrMap[oldMaxB] -= oldFinalAggSum

16

17 newMaxB = map3[t.A]. getMax ();

18 aggrMap[newMaxB] += oldFinalAggSum + t.A * t.B * t.X

19

20 #compute the final result

21 res = aggrMap[map2 * 0.5]

22 return res

𝑂 (log ( |𝑅 |))

(b) PAI with BST for MAX-Equality based Nested Query (Section
6.1.2)

Figure 4: Code corresponding to PAI index with BST for the query in Example 6.1 and 6.2 (assuming 𝑂 (1) hash map access).

define a insert for the binary search tree. To get the best time
complexity, we can use the Red-Black Trees [15], Left-leaning Red-
Black Trees [32], Splay [33] or other balanced binary search tree
supporting logarithmic insertions or deletions. Therefore, the time
complexity for insert (line 12) is log ( |𝑅 |), the time complexity for
getMax is log ( |𝑅 |). The total time complexity for the update is also
log ( |𝑅 |).

So far, we have seen that the additional balanced binary search
tree works well which can update all the materialized views and
aggregate maps in𝑂 (log (𝑛)) time. The logarithmic term can hardly
be removed since the lower bound for maintaining the order of a
sequence of data with size 𝑛 is 𝑂 (log (𝑛)).

6.2 Nested Max with Inequality
Example 6.3. This query is from the example 2.2 in [6], it is the

volume-weighted average price (VWAP, a technical analysis indicator
used in finance).

SELECT Sum(b.price * b.volume) FROM bids b

WHERE

0.75 * (SELECT Sum(b1.volume) FROM bids b1)

< (SELECT Sum(b2.volume) FROM bids b2

WHERE b2.price <= b.price)

Correspondingly, we create another example for the Max-based
sub-query version of the example 6.3.

Example 6.4. This query applies the Max in the predicate of the
sub-query as the example 6.3

SELECT Sum(b.price * b.volume) FROM bids b

WHERE

0.75 * (SELECT Sum(b1.volume) FROM bids b1)

< (SELECT Max(b2.volume) FROM bids b2

WHERE b2.price <= b.price)

Similarly, let us review the RPAI index proposed in [6] which is
invented for such nested correlated inequality query as example
6.4.

6.2.1 Using RPAI Index for Query with Sum Predicate. In the figure
5a, the code generated by [6] for example 6.3 in Python in shown.
When a new tuple 𝑡 is delivered, since the lhs_sum does not change,
sowe can reuse the previous map2 tomaintain it. As for the rhs_sum,
it computes the summation of volume for those records whose
price are less than or equal to the price of the current record. We
can use the RPAI index to maintain between price and rhs_sum in
𝑂 (log ( |𝑅 |)) (mainly by efficient getSum). Therefore, we just need
𝑂 (log ( |𝑅 |)) time to get the old rhs_sum (line 7) and the sum of
all volume for t.price (line 8). Next, updating the map3 can also
be done in 𝑂 (log ( |𝑅 |)) and updating the map2 in constant time.
Furthermore, since rhs_sum involves in all the records whose 𝑝𝑟𝑖𝑐𝑒
are less than or equal to the 𝑝𝑟𝑖𝑐𝑒 of the current record, a new
record 𝑡 will also influence the rhs_sum for those records whose
𝑝𝑟𝑖𝑐𝑒 are greater than or equal to the 𝑡 .𝑝𝑟𝑖𝑐𝑒 . Thus, when insert
record 𝑡 , we need to update a range of rhs_sum of records. Due
to the logarithmic shiftKeys of RPAI, we can finish it very fast
(line 10). So does update for aggrIndex (line 14-15). As for the final
results, we can query the getSum by the lhs_sum to get it.

The key of the aggrIndex above is the rhs_sum. RPAI uses a
variant of the binary search tree to maintain it. The main contribu-
tion of the RPAI is its clever design for the semantics of the node,
which is the key relative to its parent. So that we can shift keys of a
sub-tree by just shifting (adding or subtracting some value to) the
root of that sub-tree.

6.2.2 Using RPAI Index for Query with Max Predicate. So far, we
have seen the power of RPAI. As discussed in the limitation of [6],
the RPAI does not work for Max/Min. The reason is that Max/Min
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1 aggrIndex = {} # <rhs_sum > --> sum(price * volume)

2 map2 = 0.0 # sum(volume)

3 map3 = {} # price --> sum(volume)

4

5 def on_new_bids(t: record):

6 # rhs_sum for new record (before update)

7 rhs_sum = getSum(map3 , t.price)

8 volume = map3[t.price]

9 # update the aggregate index

10 shiftKeys(aggrIndex , rhs_sum -volume , t.X * t.volume)

11 # update the maps

12 map3.insert(t.price , t.volume*t.X)

13 map2 += t.volume*t.X

14 aggrIndex[rhs_sum + t.X * t.volume]

15 += t.X * t.price * t.volume

16 #compute the output

17 return compute ()

18

19 def compute ():

20 lhs_sum = map2 * 0.75

21 res = getSum(aggrIndex , inf)

22 - getSum(aggrIndex , lhs_sum)

23 return res

𝑂 (log ( |𝑅 |))

(a) RPAI for Sum-Inequality based Nested Query (Section 6.2.1)

1 maxIndex = {} # price --> rhs_max

2 sumIndex = {} # price --> sum(price * volume)

3 map2 = 0.0 # sum(volume)

4

5 def on_new_bids(t: record):

6 # update the lhs_sum for new record

7 map2 += t.volume*t.X

8 # insert new record

9 maxIndex.insert(t.price , t.X, t.volume)

10 sumIndex.insert(t.price , t.X*t.price*t.volume)

11 # update the rhs_max for maxIndex

12 updateMax(maxIndex , t.price , inf , t.volume , t.X)

13 # update the sum for merge index

14 updateSum(sumIndex , t.price , inf , t.X*t.price*t.volume)

15

16 # compute the output

17 return compute ()

18

19 def compute ():

20 lhs_sum = map2 * 0.75

21 rhs_max = getMax(maxIndex , lhs_sum)

22 res = getSum(sumIndex , inf) - getSum(sumIndex , rhs_max)

23 return res

𝑂 (log ( |𝑅 |))

(b) RPAI with BST for Max-Inequality based Nested Query (Section 6.2.2)

Figure 5: Code corresponding to PAI index with BST for the query in Example 6.1 and 6.2 (assuming 𝑂 (1) hash map access).

is not streamable. We will investigate more thoroughly the reason
why Max/Min can not be supported. In figure 5a, we have seen the
code generated for Sum-Inequality based nested query. Let us follow
the same idea of using BST on the RPAI, convert the value of map3
(line 3) from tracking the Sum to the Max for each key. Secondly, the
key of aggrIndex (line 1) will be transformed to rhs_max.

Next, we will explore whether getMax (respective to getSum),
shiftKeys, and insert can perform smoothly. Let us consider the
map3 at first, insert and getMax is related to map3. For getMax, we
will follow the same idea to get the maximum volume among those
whose price is no greater than the price since Sum and Max are
both decomposable. When it comes to the insert, for the same key
(price), we will keep the maximum volume. Same as the case in
figure 4b, when we try to

If we try to convert sum-based RPAI to a max-based RPAI, it
will be hard to define the semantics of the keys. Let us consider the
example 5b, if we follow the same idea of RPAI, let us first use the
rhs_max (re-define it since we are using Max instead of Sum) as the
key of the aggrIndex. Then what is one node’s key relative to its
parent?

There are two cases, right child and left child. If you build a RPAI
for Max-based query, assume 𝑟 is the root of this tree, 𝑐1 and 𝑐2 are
the left child and right child of 𝑟 . Based on the definition of rhs_max,
the key value of 𝑟 is the maximum 𝑣𝑜𝑙𝑢𝑚𝑒 for those whose 𝑝𝑟𝑖𝑐𝑒 is
less than or equal to the 𝑝𝑟𝑖𝑐𝑒 of the node 𝑟 (including 𝑟 and its left
sub-tree). Since the rhs_max of 𝑐2 is the maximum 𝑣𝑜𝑙𝑢𝑚𝑒 for 𝑟 , its
left sub-tree, 𝑐2 and its left sub-tree. Thus, the difference between
them are the maximum 𝑣𝑜𝑙𝑢𝑚𝑒 of 𝑐2 and its sub-tree. If 𝑆 and𝑇 are
two sets, then the following equation holds:

𝑀𝑎𝑥 (𝑆 ∪𝑇 ) = 𝑀𝑎𝑥 (𝑀𝑎𝑥 (𝑆), 𝑀𝑎𝑥 (𝑇 )) .

Similar to the original RPAI, we can define the key value of 𝑐2 as
the maximum 𝑣𝑜𝑙𝑢𝑚𝑒 of 𝑐2 and its left sub-tree.

When it comes to the 𝑐1, the semantics becomes much more
vague. Since the rhs_max of 𝑐1 only covers the maximum 𝑣𝑜𝑙𝑢𝑚𝑒

of itself and its left sub-tree. Consequently, the difference between
𝑐1 and 𝑟 will be 𝑟 itself and 𝑟 ’s right sub-tree. Is remains unclear
how to define minus when the Max operation applied on sets.

On the other hand, we can try to build auxiliary BST as what
we did for Query with equality. Following this way, we can remove
the parent-relative keys and resume the rhs_sum semantics of each
key. Thus, the update on one node will not influence the whole
sub-tree, the high-performance sub-tree shiftKeys will fall back
to 𝑂 ( |𝑅 |) from 𝑂 (log ( |𝑅 |)).

In essence, we can map the addition of Sum to the set union of
Max, but we can hardly find the correspondence for the subtraction
of Sum in set operations.

6.2.3 Using Range Index for Query with Max Predicate. As you
observe from the Python code from figure 5a, we build map3 from
𝑝𝑟𝑖𝑐𝑒 to the rhs_sum and we also build aggrIndex from rhs_sum to
the final aggregate result. rhs_sum grows monotonically with the
increasing order of 𝑝𝑟𝑖𝑐𝑒 . The final aggregate result increases simi-
larly with the rhs_sum, so it also grows monotonically respective
to the increasing order of 𝑝𝑟𝑖𝑐𝑒 . Therefore, rather than build index
based on rhs_sum (aggrIndex), a term hard to maintain, why not
build index just based on 𝑝𝑟𝑖𝑐𝑒 which is simple, without aggregation
and keep the same monotonicity?

As shown in figure 5b, we build only two indices maxIndex (line
1) whose key and value are the 𝑝𝑟𝑖𝑐𝑒 and rhs_max respectively, and
sumIndex (line 2) whose key and value are the 𝑝𝑟𝑖𝑐𝑒 and the final
aggregate result. maxIndex is similar to the map3 (line 3 of figure 5a),
but directly keeps the prefix aggregation of 𝑣𝑜𝑙𝑢𝑚𝑒 (range value) on
each node rather than only maintaining 𝑣𝑜𝑙𝑢𝑚𝑒 for specific 𝑝𝑟𝑖𝑐𝑒
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(just like map3). For map3, query the rhs_sum, we need to aggregate
all the sub-trees’ value who are smaller than the current 𝑝𝑟𝑖𝑐𝑒 . Right
now, the value on one specific node is enough. For simplicity, you
can regard the sumIndex and maxIndex as two binary search trees
who is capable of range update.

When a new record 𝑡 comes, we will insert or delete (depends on
𝑡 .𝑋 ) the new record (line 9-10) firstly. Next, we will fill the rhs_max
and final aggregate result for it. updateMax will be used to update
the rhs_max for those whose 𝑝𝑟𝑖𝑐𝑒 is between 𝑡 .𝑝𝑟𝑖𝑐𝑒 and inf by
inserting or deleting one 𝑡 .𝑣𝑜𝑙𝑢𝑚𝑒 . As for the updateSum, we can
do something similar for the sumIndex by adding 𝑡 .𝑋 ∗ 𝑡 .𝑝𝑟𝑖𝑐𝑒 ∗
𝑡 .𝑣𝑜𝑙𝑢𝑚𝑒 . Concretely, updateSum and updateMax are range update
in BST, we can use a tag on the root to represent the update for the
whole sub-tree. When we need to dive into this sub-tree (query or
update), we can push down the tag, we call such operation as "lazy
update". It only costs 𝑂 (log ( |𝑅 |)) time. All the details about these
range update will be covered in the section ??. All the operations re-
lated to map2 does not change (line 2, 6). When computing the final
results, we can utilize the getSumByMax function which is used for
computing Sum of the second value by probing the rhs_max. Since
we know both values are growing monotonically in the ascending
order of 𝑝𝑟𝑖𝑐𝑒 . It also costs 𝑂 (log ( |𝑅 |)) time. Therefore, the total
time complexity is still 𝑂 (log ( |𝑅 |)).

7 BINARY SEARCH TREE WITH RANGE
UPDATES

In this section, we design a new tree-based data structures called
Range Binary Search Tree (RBST) to support both range query for
Max and Sum in logarithmic time. As a augmented binary search
tree, it also supports common tree operations (e.g. insert, delete).

Recall that the problem we are facing is when constructing the
parent-relative keys for Max-based query, there is no way to build
parent-relative keys but we still want an efficient range update
operation (shiftKeys can be regarded as a range updates for the
keys). Based on the range search in [12], we know that a range
query on a binary search tree can be done by merging all the results
(e.g. Sum, Max) from different disjoint sub-trees since these aggregate
operations are decomposable.

Follow this way, a range update can be decomposed into several
disjoint sub-tree updates. Now that the only problem remains is
how to do range update without parent-relative keys. Think about
the example in figure 6. Same as the case in example 6.4, the node’s
value is the prefix maximum value in the tree in the ascending order
of the key. The only one operation we can apply is updating a range
of keys’ value. For the operation updateMax(index, 5, inf, 45,
1), our goal is to update the node whose key is larger than or equal
to 5 by the new value 45.

To do the range update efficiently, we add a tag for each node to
do lazy update. Following the same idea of getSum in [6], we can
locate the node sharing the same key as the new record along a path
from the root to one internal or leaf node. Along the way to search
for the query range, we check every node’s key and its sub-tree
range. If the whole sub-tree is included in the update range (5-inf),
then we will change the tag of root and update its value instantly
(e.g. node with key 8). Otherwise, we check whether the node itself
is in the query range, then we update its value directly (e.g. node

Figure 6: An example run of the updateMax(index, 5, inf,
45, 1) in a RBST. The original key-value pairs are (2,7),
(3,10), (5, 15), (6, 12), (7, 14), (8, 27), (9, 33). The
value maintains the prefix maximum value in the increasing
order of keys.

with key 5 & 6). Next, we need to decide whether to search into
sub-trees of the current node. If its sub-tree’s range is intersected
with the update range, we will update further (e.g. search in the
right sub-tree of node with key 3). If not, we will not search into
its child (e.g. no search in the left sub-tree of node with key 3).

Following this idea, we can traverse all the node or sub-tree
whose key range is intersected with the update range and update
them. As you can image, if it is a sumIndex, the tag will represent
the value added to all the node in some sub-tree. As for the query,
we will do "lazy update" which is to push-down the tag into sub-
trees along the way to search the query range. In figure 7, there is
an example for push-down tag. The query range is just the node
with key 7 and there is a tag on node with key 8. Since there is a tag
on node with key 8, we need to push-down the tag to its sub-trees,
otherwise, its sub-trees will lose the information of such tag which
should be sent to them earlier. Thus, the push-down operation
will update the value of the tag of its sub-trees. The push-down
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Figure 7: An example push-down in a RBST from node with
key 8 to its sub-trees.

operation can be processed when any update or query is issued
into some sub-tree. If there is no update or query in some sub-tree,
we can let some its ancestor keep the information forever. Thus,
the tag help us to make the range update and range query much
more efficient without using the parent-relative keys.

As for the time complexity, a range update or query can be
decomposed by 𝑂 (log (𝑛)) sub-tree update or query where 𝑛 is
the total number of node. Additionally, push-down, tag and value
update are both𝑂 (1). Therefore, the total time complexity for RBST
is 𝑂 (log (𝑛)) and it can be used to support nested correlated query
with Max/Min aggregation.

8 GENERAL IVM EVALUATION FOR JOIN
When it goes back to the plain query plan (by SparkSQL), we can
find that the optimization techniques covered by RPAI and PAI [6]
and section 6 using the join condition (both left and right sides) in
the sub-query as the key and the aggregate value of the outer query
as the value to build the index. Therefore, that is the special case
for Groupjoin. Next, we will cover more general IVM evaluation
strategy for Join oprtator.

We have covered the cases for equality involved (including anti-,
semi-) joins in the end of secion 4. In DBToaster [21], the author
has proposed that materializing all the intermediate results will be
costly, then they choose to select several sub-view to materialize.
If there is a multiple (more than 2) way join in one query, it is bet-
ter to maintain indexes for each relation by query decomposition.
Concretely, when there is au update from one relation involving in
a 3-way join, the new inserted/deleted tuple will be probed to the
indexes of the other two relations to update the final materilized
view. In this way, no join results for any two relations are main-
tained, as you can image, it may occur 𝑂 ( |𝑅𝑖 | × |𝑅 𝑗 |) join results
where 𝑅𝑖 and 𝑅 𝑗 are two relations.

Case will be very similar for the inequality involved join. Let
us consider the join condition 𝑅1 .𝐴 < 𝑅2 .𝐵 where 𝑅1, 𝑅2 are two
relations, and 𝐴, 𝐵 are their attributes. Instead of materializing all
the join results, we only build two indexes to maintain the order for
𝑅1 .𝐴 and 𝑅2 .𝐵 separately. When the user wants to know the final
answer, we just need to issue the join between them. As for the
case when one side is aggregate sub-query, we only need to create
and keep the index for another side, when the trigger for the final
result is issued, we can easily probe the number of that sub-query
to the index from the other side.

9 RELATEDWORK
Materializing and reusing query results for other queries has been
an area of exploration for quite some time. Approaches range from
sub-query materialization [31] and common sub-expression extrac-
tion [43], to multi-query optimization [31]. Building on the concept
of materializing additional first-order views [31], DBToaster [20, 21]
employs the idea of IVM recursively, using derivatives to compute
the original function. However, this approach is limited to cases
where the sub-query is simpler than the outer query. In general,
these studies focus on strategies for determiningwhat tomaterialize
in IVM systems.

Efficiently evaluating incremental views requires striking a bal-
ance between update workloads and query latency. Eager and lazy
methods have been proposed in [10, 42] to address this trade-off.
Additionally, incrementability is introduced by [36] as a measure of
IVM’s cost-effectiveness, helping to decide whether to apply eager
or lazy execution to a query. In terms of the resource consumption,
[35] studies how to efficiently evaluate queries under constraining
resource, such as limited memory or disk space. In addition, [23, 37]
attempt to share resources across different queries in data streams.
Besides tuple-level IVM, [35, 38, 39] explore how to evaluate for
intermittent data ingestion, that is to say data will come incremen-
tally in a predictable style (e.g. once per hour). However, none of
them builds a framework to optimize for IVM completely.

With numerous materialization strategies available, [20, 21, 39]
study how to design a query compiler for IVM. DBToaster [20]
proposes a query language AGgregate CAlculus (AGCA) for tuple.
But it lacks ability to express order (e.g. Sort, Min, Max) in an effi-
cient way. When it comes to nested queries, the code generated by
DBToaster yields sub-optimal performance. Tempura [39] proposes
a time-varying relation (TVR) [7] based Incremental query Planning
(TIP for short) Model, which incorporates temporal information
to allow the optimizer to explore efficient plans as ingested data
changes. As a result, there are many opportunities for improving
performance of planned views without considering future data in-
gestion. Recently, [6] proposes PAI and RPAI to optimize correlated
nested aggregate queries for IVM. Besides, it introduces incremen-
talizing Algorithm to extract query patterns fit their advanced data
structures. However, rewriting queries using their representation
is complex and challenging to integrate into modern database sys-
tems.

[14] claims that coarser periodic refresh of IVM can be regarded
as sliding window, which enhances the role of IVM in stream pro-
cessing. Data stream processing systems [9, 41] are designated for
window-based queries (e.g. tumbling windows, sliding windows).
Naiad (Timely Dataflow, TD for short) [26], Differential Dataflow
(DD for short) [24] are designed towards distributed stream data
processing. Based on them, Materialize [17] builds a streaming data-
base, focusing on high performance IVM. The fundamental data
representation aligns with the bag relational algebra, which means
everything involves multiplicities. Materialize explores some join
optimizations, including delta computation and public indices for
a single data source, which are similar to our backend operations.
However, it has not yet solved aggregations like Max/Min, and op-
erators that do not satisfy subtraction are unsupported. The same
limitation applies to Sort. Moreover, Materialize must maintain a
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large volume of intermediate results for multi-way joins. We be-
lieve that integrating our Group-join and BST could significantly
improve their performance.

Some DBMSs (e.g. PostgreSQL [2]) also planned to support IVM
gradually [27, 28]. Taking inspiration from ID-based [18], one OID-
based approach was proposed to handle the view maintenance
for Join operator. The OID concept involves materializing an ID
map between join results and the two joined tables. Consequently,
when an update occurs, the OID can be used to delete outdated
results after computing the updated join results. Besides Inner
Join, Select, and Project have also been supported. Surprisingly,
Distinct is handled by multiplicities-based counting algorithm
in Postgresql. However, it is not able to handle other aggregation
operators and Group-By. Other data warehouse product (e.g. Ama-
zon Redshift [1]) would like to support incremental refresh views
but only limited in the scope of flat select-project-join-aggregate
(SPJAG) queries [3] (e.g. without sub-query).

10 CONCLUSION
In summary, we have highlighted the benefits of using query plans
for incremental view maintenance, such as ease of use, flexibility,
and the ability to apply traditional query optimization techniques.
Previous work has struggled to address certain aspects, such as
MAX/MIN, order-unfriendly representations from DBToaster [21],
and inefficient evaluation strategies in some commercial databases.
In this report, we first outline how to structure the IVM evalua-
tor and the IVM evaluation strategies for common operators in
query plans. Next, we address the limitation of missing MAX/MIN
for aggregate nested correlated queries by introducing a new in-
dex - the range binary search tree. We then demonstrate how to
extend the optimization to more general Join operators. As a re-
sult, we present a framework that integrates query plans into an
IVM compiler, complete with numerous specialized optimization
strategies.
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